Source code for cell2location.models.reference._reference_model

from typing import List, Optional

import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from anndata import AnnData
from pyro import clear_param_store
from scvi import REGISTRY_KEYS
from scvi.data import AnnDataManager
from scvi.data.fields import (
    CategoricalJointObsField,
    CategoricalObsField,
    LayerField,
    NumericalJointObsField,
    NumericalObsField,
)
from scvi.model.base import BaseModelClass, PyroSampleMixin, PyroSviTrainMixin
from scvi.utils import setup_anndata_dsp

from ...cluster_averages import compute_cluster_averages
from ..base._pyro_base_reference_module import RegressionBaseModule
from ..base._pyro_mixin import PltExportMixin, QuantileMixin
from ._reference_module import RegressionBackgroundDetectionTechPyroModel


[docs]class RegressionModel(QuantileMixin, PyroSampleMixin, PyroSviTrainMixin, PltExportMixin, BaseModelClass): """ Model which estimates per cluster average mRNA count account for batch effects. User-end model class. https://github.com/BayraktarLab/cell2location Parameters ---------- adata single-cell AnnData object that has been registered via :func:`~scvi.data.setup_anndata`. use_gpu Use the GPU? **model_kwargs Keyword args for :class:`~scvi.external.LocationModelLinearDependentWMultiExperimentModel` Examples -------- TODO add example >>> """ def __init__( self, adata: AnnData, model_class=None, use_average_as_initial: bool = True, **model_kwargs, ): # in case any other model was created before that shares the same parameter names. clear_param_store() super().__init__(adata) if model_class is None: model_class = RegressionBackgroundDetectionTechPyroModel # annotations for cell types self.n_factors_ = self.summary_stats["n_labels"] self.factor_names_ = self.adata_manager.get_state_registry(REGISTRY_KEYS.LABELS_KEY).categorical_mapping # annotations for extra categorical covariates if REGISTRY_KEYS.CAT_COVS_KEY in self.adata_manager.data_registry: self.extra_categoricals_ = self.adata_manager.get_state_registry(REGISTRY_KEYS.CAT_COVS_KEY) self.n_extra_categoricals_ = self.extra_categoricals_.n_cats_per_key model_kwargs["n_extra_categoricals"] = self.n_extra_categoricals_ # use per class average as initial value if use_average_as_initial: # compute cluster average expression aver = self._compute_cluster_averages(key=REGISTRY_KEYS.LABELS_KEY) model_kwargs["init_vals"] = {"per_cluster_mu_fg": aver.values.T.astype("float32") + 0.0001} self.module = RegressionBaseModule( model=model_class, n_obs=self.summary_stats["n_cells"], n_vars=self.summary_stats["n_vars"], n_factors=self.n_factors_, n_batch=self.summary_stats["n_batch"], **model_kwargs, ) self._model_summary_string = f'RegressionBackgroundDetectionTech model with the following params: \nn_factors: {self.n_factors_} \nn_batch: {self.summary_stats["n_batch"]} ' self.init_params_ = self._get_init_params(locals())
[docs] @classmethod @setup_anndata_dsp.dedent def setup_anndata( cls, adata: AnnData, layer: Optional[str] = None, batch_key: Optional[str] = None, labels_key: Optional[str] = None, categorical_covariate_keys: Optional[List[str]] = None, continuous_covariate_keys: Optional[List[str]] = None, **kwargs, ): """ %(summary)s. Parameters ---------- %(param_layer)s %(param_batch_key)s %(param_labels_key)s %(param_cat_cov_keys)s %(param_cont_cov_keys)s """ setup_method_args = cls._get_setup_method_args(**locals()) adata.obs["_indices"] = np.arange(adata.n_obs).astype("int64") anndata_fields = [ LayerField(REGISTRY_KEYS.X_KEY, layer, is_count_data=True), CategoricalObsField(REGISTRY_KEYS.BATCH_KEY, batch_key), CategoricalObsField(REGISTRY_KEYS.LABELS_KEY, labels_key), CategoricalJointObsField(REGISTRY_KEYS.CAT_COVS_KEY, categorical_covariate_keys), NumericalJointObsField(REGISTRY_KEYS.CONT_COVS_KEY, continuous_covariate_keys), NumericalObsField(REGISTRY_KEYS.INDICES_KEY, "_indices"), ] adata_manager = AnnDataManager(fields=anndata_fields, setup_method_args=setup_method_args) adata_manager.register_fields(adata, **kwargs) cls.register_manager(adata_manager)
[docs] def train( self, max_epochs: Optional[int] = None, batch_size: int = 2500, train_size: float = 1, lr: float = 0.002, **kwargs, ): """Train the model with useful defaults Parameters ---------- max_epochs Number of passes through the dataset. If `None`, defaults to `np.min([round((20000 / n_cells) * 400), 400])` train_size Size of training set in the range [0.0, 1.0]. batch_size Minibatch size to use during training. If `None`, no minibatching occurs and all data is copied to device (e.g., GPU). lr Optimiser learning rate (default optimiser is :class:`~pyro.optim.ClippedAdam`). Specifying optimiser via plan_kwargs overrides this choice of lr. kwargs Other arguments to scvi.model.base.PyroSviTrainMixin().train() method """ kwargs["max_epochs"] = max_epochs kwargs["batch_size"] = batch_size kwargs["train_size"] = train_size kwargs["lr"] = lr super().train(**kwargs)
def _compute_cluster_averages(self, key=REGISTRY_KEYS.LABELS_KEY): """ Compute average per cluster (key=REGISTRY_KEYS.LABELS_KEY) or per batch (key=REGISTRY_KEYS.BATCH_KEY). Returns ------- pd.DataFrame with variables in rows and labels in columns """ # find cell label column label_col = self.adata_manager.get_state_registry(key).original_key # find data slot x_dict = self.adata_manager.data_registry["X"] if x_dict["attr_name"] == "X": use_raw = False else: use_raw = True if x_dict["attr_name"] == "layers": layer = x_dict["attr_key"] else: layer = None # compute mean expression of each gene in each cluster/batch aver = compute_cluster_averages(self.adata, labels=label_col, use_raw=use_raw, layer=layer) return aver
[docs] def export_posterior( self, adata, sample_kwargs: Optional[dict] = None, export_slot: str = "mod", add_to_varm: list = ["means", "stds", "q05", "q95"], scale_average_detection: bool = True, use_quantiles: bool = False, ): """ Summarise posterior distribution and export results (cell abundance) to anndata object: 1. adata.obsm: Estimated references expression signatures (average mRNA count in each cell type), as pd.DataFrames for each posterior distribution summary `add_to_varm`, posterior mean, sd, 5% and 95% quantiles (['means', 'stds', 'q05', 'q95']). If export to adata.varm fails with error, results are saved to adata.var instead. 2. adata.uns: Posterior of all parameters, model name, date, cell type names ('factor_names'), obs and var names. Parameters ---------- adata anndata object where results should be saved sample_kwargs arguments for self.sample_posterior (generating and summarising posterior samples), namely: num_samples - number of samples to use (Default = 1000). batch_size - data batch size (keep low enough to fit on GPU, default 2048). use_gpu - use gpu for generating samples? export_slot adata.uns slot where to export results add_to_varm posterior distribution summary to export in adata.varm (['means', 'stds', 'q05', 'q95']). use_quantiles compute quantiles directly (True, more memory efficient) or use samples (False, default). If True, means and stds cannot be computed so are not exported and returned. Returns ------- """ sample_kwargs = sample_kwargs if isinstance(sample_kwargs, dict) else dict() # get posterior distribution summary if use_quantiles: add_to_varm = [i for i in add_to_varm if (i not in ["means", "stds"]) and ("q" in i)] if len(add_to_varm) == 0: raise ValueError("No quantiles to export - please add add_to_obsm=['q05', 'q50', 'q95'].") self.samples = dict() for i in add_to_varm: q = float(f"0.{i[1:]}") self.samples[f"post_sample_{i}"] = self.posterior_quantile(q=q, **sample_kwargs) else: # generate samples from posterior distributions for all parameters # and compute mean, 5%/95% quantiles and standard deviation self.samples = self.sample_posterior(**sample_kwargs) # export posterior distribution summary for all parameters and # annotation (model, date, var, obs and cell type names) to anndata object adata.uns[export_slot] = self._export2adata(self.samples) # export estimated expression in each cluster # first convert np.arrays to pd.DataFrames with cell type and observation names # data frames contain mean, 5%/95% quantiles and standard deviation, denoted by a prefix for k in add_to_varm: sample_df = self.sample2df_vars( self.samples, site_name="per_cluster_mu_fg", summary_name=k, name_prefix="", ) if scale_average_detection and ("detection_y_c" in list(self.samples[f"post_sample_{k}"].keys())): sample_df = sample_df * self.samples[f"post_sample_{k}"]["detection_y_c"].mean() try: adata.varm[f"{k}_per_cluster_mu_fg"] = sample_df.loc[adata.var.index, :] except ValueError: # Catching weird error with obsm: `ValueError: value.index does not match parent’s axis 1 names` adata.var[sample_df.columns] = sample_df.loc[adata.var.index, :] return adata
[docs] def plot_QC( self, summary_name: str = "means", use_n_obs: int = 1000, scale_average_detection: bool = True, ): """ Show quality control plots: 1. Reconstruction accuracy to assess if there are any issues with model training. The plot should be roughly diagonal, strong deviations signal problems that need to be investigated. Plotting is slow because expected value of mRNA count needs to be computed from model parameters. Random observations are used to speed up computation. 2. Estimated reference expression signatures (accounting for batch effect) compared to average expression in each cluster. We expect the signatures to be different from average when batch effects are present, however, when this plot is very different from a perfect diagonal, such as very low values on Y-axis, non-zero density everywhere) it indicates problems with signature estimation. Parameters ---------- summary_name posterior distribution summary to use ('means', 'stds', 'q05', 'q95') Returns ------- """ super().plot_QC(summary_name=summary_name, use_n_obs=use_n_obs) plt.show() inf_aver = self.samples[f"post_sample_{summary_name}"]["per_cluster_mu_fg"].T if scale_average_detection and ("detection_y_c" in list(self.samples[f"post_sample_{summary_name}"].keys())): inf_aver = inf_aver * self.samples[f"post_sample_{summary_name}"]["detection_y_c"].mean() aver = self._compute_cluster_averages(key=REGISTRY_KEYS.LABELS_KEY) aver = aver[self.factor_names_] plt.hist2d( np.log10(aver.values.flatten() + 1), np.log10(inf_aver.flatten() + 1), bins=50, norm=matplotlib.colors.LogNorm(), ) plt.xlabel("Mean expression for every gene in every cluster") plt.ylabel("Estimated expression for every gene in every cluster") plt.show()